

Scanning Computerized Ophthalmic Diagnostic Imaging

Policy ID:	HHO-DE-MP-1180
Approved By:	Highmark Health Options – Market Leadership
Provider Notice Date:	12/15/2021; 03/01/2023; 09/22/2023
Original Effective Date:	01/15/2022; 04/01/2023; 10/23/2023
Annual Approval Date:	11/30/2022
Last Revision Date:	11/30/2022; 11/20/2023
Products:	Medicaid
Application:	All participating hospitals and providers
Page Number(s):	1 of 11

Disclaimer

Highmark Health Options medical policy is intended to serve only as a general reference resource regarding coverage for the services described. This policy does not constitute medical advice and is not intended to govern or otherwise influence medical decisions.

POLICY STATEMENT

Highmark Health Options may provide coverage under the medical-surgical benefits of the Company's Medicaid products for medically necessary scanning computerized ophthalmic diagnostic imaging services.

This policy is designed to address medical necessity guidelines that are appropriate for the majority of individuals with a particular disease, illness, or condition. Each person's unique clinical circumstances warrant individual consideration, based upon review of applicable medical records.

The qualifications of the policy will meet the standards of the National Committee for Quality Assurance (NCQA) and the Delaware Department of Health and Social Services (DHSS) and all applicable state and federal regulations.

DEFINITIONS

Highmark Health Options (HHO) – Managed care organization serving vulnerable populations that have complex needs and qualify for Medicaid. Highmark Health Options members include individuals and families with low income, expecting mothers, children, and people with disabilities. Members pay nothing to very little for their health coverage. Highmark Health Options currently services Delaware Medicaid: Delaware Healthy Children Program (DHCP) and Diamond State Health Plan Plus LTSS (DSHP Plus LTSS) members

Confocal Scanning Laser Ophthalmoscopy (CSLO) – A laser-based image acquisition technique, which is intended to improve the quality of the examination compared to standard ophthalmologic examination. A laser is scanned across the retina along with a detector system. Only a single spot on the retina is illuminated at any time, resulting in a high-contrast image of great reproducibility that can be used to estimate the thickness of the RNFL. In addition, this technique does not require maximal mydriasis, which may be a problem in patients with glaucoma. The Heidelberg Retinal Tomograph is probably the most common example of this technology.

Optical Coherence Tomography (OCT) – A noninvasive, noncontact imaging system that uses near-infrared light to provide direct cross-sectional measurement of the retinal nerve fiber layer. The principles employed are similar to those used in B-mode ultrasound, except light, not sound, is used to produce the 3-dimensional images. The light source can be directed into the eye through a conventional slit-lamp biomicroscope and focused onto the retina through a typical 78-diopter lens. This system requires dilation of the patient's pupil.

Scanning Laser Polarimetry (SLP) – The retinal nerve fiber layer (RNFL) is birefringent, causing a change in the state of polarization of a laser beam as it passes. A 780-nm diode laser is used to illuminate the optic nerve. The polarization state of the light emerging from the eye is then evaluated and correlated with RNFL thickness. Unlike CSLO, SLP can directly measure the thickness of the RNFL. GDx® is a common example of a scanning laser polarimeter. GDx® contains a normative database and statistical software package to allow comparison to age-matched normal subjects of the same ethnic origin. The advantages of this system are that images can be obtained without pupil dilation and evaluation can be done in about 10 minutes. Current instruments have added enhanced and variable corneal compensation technology to account for corneal polarization.

PROCEDURE

Prior Authorization is not required.

1. Anterior segment SCODI will be considered medically reasonable and necessary for evaluation of specified forms of glaucoma (narrow angle, suspected narrow angle, mixed and open angle) and certain disorders of the cornea (corneal edema or opacity), iris, and ciliary body.
2. Posterior segment SCODI will be considered medically reasonable and necessary under the following circumstances:
 - For the diagnosis and management of a patient who has mild, moderate, severe, or indeterminate stage glaucoma or who is suspected of having glaucoma.
 - Monitoring patients being treated with chloroquine (CQ) and/or hydroxychloroquine (HCQ) for the development of retinopathy.
 - The evaluation and treatment of patients with conditions affecting the optic nerve (e.g., optic neuropathy) or retinal disease (e.g., macular degeneration, diabetic retinopathy) and in the evaluation and treatment of certain macular abnormalities (e.g., macular edema, atrophy associated with degenerative retinal diseases).

The following are considered not reasonable and necessary, and therefore will be denied:

- SCODI is usually not medically reasonable and necessary when performed to provide additional confirmatory information regarding a diagnosis which has already been determined. Documentation should support that the SCODI test result was used for establishing a diagnosis, establishing a baseline prior to treatment, or for monitoring purposes.
- Fundus photography and posterior segment SCODI performed on the same eye on the same day are generally mutually exclusive of one another (National Correct Coding Initiative [NCCI] Policy Manual). The provider is not precluded from performing both on the same eye on the same day when each service is necessary to evaluate and treat the patient. The medical record should clearly document the medical necessity of each service.
- Screening (patient without signs or symptoms) for any condition is not medically reasonable and necessary.

Note: This medical policy imposes frequency limitations as well as diagnosis limitations that support diagnosis to procedure code automated denials. However, services performed for any given diagnosis must meet all of the indications and limitations stated in this policy.

3. Documentation Requirements

- 1) All documentation must be maintained in the patient's medical record and made available to the contractor upon request.
- 2) Every page of the record must be legible and include appropriate patient identification information (e.g., complete name, dates of service[s]). The documentation must include the legible signature of the physician or nonphysician practitioner responsible for and providing the care to the patient.
- 3) The submitted medical record must support the use of the selected ICD-10-CM code(s). The submitted CPT/HCPGS code must describe the service performed.
- 4) The medical record documentation must support the medical necessity of the services as stated in this policy.
- 5) Medical record must include the test results, comparison with prior tests when applicable, computer analysis of the data, and appropriate data storage for future comparison in follow-up exams.
- 6) If applicable, medical record documentation must clearly indicate the rationale which supports the medical necessity for performing the fundus photography and posterior segment SCODI on the same day on the same eye. Documentation should also reflect how the test results were used in the patient's plan of care.
- 7) If bilateral studies are performed, the documentation maintained by the provider must demonstrate medical need for the performance of the test for each eye.
- 8) When reporting ICD-10 code Z79.899, the medical record must reflect the medication administered as well as the underlying condition for which it was given.

4. Utilization Guidelines

- CPT code 92132: No more than two (2) exams per year will be considered medically reasonable and necessary for covered indications.
- CPT code 92133: No more than two (2) exams per year will be considered medically reasonable and necessary for the patient who has or is suspected of having glaucoma.
- CPT code 92134: No more than one (1) exam every two (2) months will be considered medically reasonable and necessary to manage the patient whose primary ophthalmological condition is related to a retinal disease that is not undergoing active treatment. *

* Note: Please see next paragraph if undergoing active treatment.

No more than one (1) exam per month will be considered medically reasonable and necessary to manage the patient with retinal conditions undergoing active treatment. These conditions include wet AMD, choroidal neovascularization, macular edema, diabetic retinopathy (proliferative and nonproliferative), branch retinal vein occlusion, central retinal vein occlusion, and cystoid macular edema. With the development of treat and extend protocols for patients with wet AMD treated with antiangiogenic drugs, it is expected that SCODI (unilateral or bilateral) will be used for therapeutic decision making and utilized at maximum of monthly with subsequent less frequency based on the patient treatment protocol and patient response as documented in the medical record.

In addition, other conditions which may undergo rapid clinical changes monthly requiring aggressive therapy and frequent follow-up (e.g., macular hole and traction retinal detachment) may also require monthly scans.

No more than one (1) exam per year will be considered medically reasonable and necessary for patients being treated with CQ and/or HCQ. These patients should receive a baseline examination within the first year of treatment and as an annual follow-up after five years of treatment. For higher-risk patients, annual testing may begin immediately (without a 5-year delay).

5. Post-payment audit statement

The medical record must include documentation that reflects the medical necessity criteria and is subject to audit by Highmark Health Options at any time pursuant to the terms of your provider agreement.

6. Place of service

The place of service for scanning computerized ophthalmic diagnostic imaging is outpatient.

7. Governing bodies approval

A number of scanner devices have been approved by the FDA. A few examples include:

- RTVue XR OCT Avanti is a system indicated for the in vivo imaging and measurement of retina, retinal fiber layer, and optic disc as a tool and aid in the diagnosis and management of retinal diseases by a clinician.
- In 2016, the RTVue XR OCT with Avanti and AngioVue software was approved by FDA as an aid in the visualization of vascular structures of the retina and choroid.
- The iExaminer was cleared by the FDA in 2012. This is a device consisting of hardware adapter and software to capture, store, send and retrieve images from the Welch Allyn PanOptic Ophthalmoscope using an iPhone.
- First Coast Service Options, Inc. Local Coverage Determination (LCD): Scanning Computerized Ophthalmic Diagnostic Imaging (L33751).
- Novitas Solutions, Inc. Local Coverage Determination (LCD): Scanning Computerized Ophthalmic Diagnostic Imaging (L35038) with effective date of 04/18/2019.

COVERED PROCEDURE CODES

CPT Codes	Description
92132	Scanning computerized ophthalmic diagnostic imaging, anterior segment, with interpretation and report, unilateral or bilateral.
92133	Scanning computerized ophthalmic diagnostic imaging, posterior segment, with interpretation and report, unilateral or bilateral.
92134	Scanning computerized ophthalmic diagnostic imaging, posterior segment, with interpretation and report, unilateral or bilateral, retina.

COVERED DIAGNOSIS CODES FOR PROCEDURE CODE 92132

Codes						
C69.01	C69.02	C69.11	C69.12	C69.41	C69.42	H17.01
H17.02	H17.03	H17.11	H17.12	H17.13	H17.811	H17.812
H17.813	H17.821	H17.822	H17.823	H17.89	H18.20	H18.211
H18.212	H18.213	H18.222	H18.223	H18.231	H18.232	H18.233
H21.271	H21.272	H21.273	H21.301	H21.302	H21.303	H21.311
H21.312	H21.313	H21.321	H21.322	H21.323	H21.89	H40.021
H40.022	H40.023	H40.031	H40.032	H40.033	H40.061	H40.062
H40.063	H40.211	H40.212	H40.213	H40.2211	H40.2212	H40.2213
H40.2214	H40.2221	H40.2222	H40.2223	H40.2224	H40.2231	H40.2232
H40.2233	H40.2234	H40.231	H40.232	H40.233	H40.241	H40.242
H40.243	H40.31X1	H40.31X2	H40.31X3	H40.31X4	H40.32X1	H40.32X2
H40.32X3	H40.32X4	H40.33X1	H40.33X2	H40.33X3	H40.33X4	
T86.8401	T86.8402	T86.8403	T86.8409	T86.8411	T86.8412	T86.8413
T86.8419	T86.8421	T86.8422	T86.8423	T86.8429		

COVERED DIAGNOSIS CODES FOR PROCEDURE CODE 92133

Codes						
H40.001	H40.002	H40.003	H40.009	H40.011	H40.012	H40.013
H40.019	H40.021	H40.022	H40.023	H40.039	H40.041	H40.042
H40.043	H40.049	H40.051	H40.052	H40.053	H40.059	H40.061
H40.062	H40.063	H40.069				

COVERED DIAGNOSIS CODES FOR PROCEDURE CODE 92134

Codes						
A18.53	B39.4	C69.21	C69.22	C69.31	C69.32	D31.31
D31.32	E08.3211	E08.3212	E08.3213	E08.3291	E08.3292	E08.3293
E08.3311	E08.3312	E08.3313	E08.3391	E08.3392	E08.3393	E08.3411
E08.3412	E08.3413	E08.3491	E08.3492	E08.3493	E08.3511	E08.3512
E08.3513	E08.3521	E08.3522	E08.3523	E08.3531	E08.3532	E08.3533
E08.3541	E08.3542	E08.3543	E08.3551	E08.3552	E08.3553	E08.3591
E08.3592	E08.3593	E08.37X1	E08.37X2	E08.37X3	E09.3211	E09.3212
E09.3213	E09.3291	E09.3292	E09.3293	E09.3311	E09.3312	E09.3313
E09.3391	E09.3392	E09.3393	E09.3411	E09.3412	E09.3413	E09.3491
E09.3492	E09.3493	E09.3511	E09.3512	E09.3513	E09.3521	E09.3522
E09.3523	E09.3531	E09.3532	E09.3533	E09.3541	E09.3542	E09.3543

E09.3551	E09.3552	E09.3553	E09.3591	E09.3592	E09.37X1	E09.37X2
E09.37X3	E10.3211	E10.3212	E10.3213	E10.3291	E10.3292	E10.3393
E10.3411	E10.3412	E10.3413	E10.3491	E10.3492	E10.3493	E10.3511
E10.3512	E10.3513	E10.3521	E10.3522	E10.3523	E10.3531	E10.3532
E10.3533	E10.3541	E10.3542	E10.3543	E10.3551	E10.3552	E10.3553
E10.3591	E10.3592	E10.3593	E10.37X1	E10.37X2	E10.37X3	E11.3211
E11.3212	E11.3213	E11.3313	E11.3391	E11.3392	E11.3393	E11.3411
E11.3412	E11.3413	E11.3491	E11.3492	E11.3493	E11.3511	E11.3512
E11.3513	E11.3521	E11.3522	E11.3523	E11.3531	E11.3532	E11.3533
E11.3541	E11.3542	E11.3543	E11.3551	E11.3552	E11.3553	E11.3591
E11.3592	E11.3593	E11.37X1	E11.37X2	E11.37X3	E13.3211	E13.3212
E13.3213	E13.3291	E13.3292	E13.3293	E13.3311	E13.3312	E13.3313
E13.3391	E13.3392	E13.3393	E13.3411	E13.3412	E13.3413	E13.3491
E13.3492	E13.3493	E13.3511	E13.3512	E13.3513	E13.3521	E13.3522
E13.3523	E13.3531	E13.3532	E13.3533	E13.3541	E13.3542	E13.3543
E13.3551	E13.3552	E13.3553	E13.3591	E13.3592	E13.3593	E13.37X1
E13.37X2	E13.37X3	G45.3	H30.011	H30.012	H30.013	H30.021
H30.022	H30.023	H30.031	H30.032	H30.033	H30.041	H30.042
H30.043	H30.111	H30.112	H30.113	H30.121	H30.122	H30.123
H30.131	H30.132	H30.133	H30.141	H30.142	H30.143	H30.21
H30.22	H30.23	H30.811	H30.812	H30.813	H30.891	H30.892
H30.893	H31.021	H31.022	H31.023	H31.101	H31.102	H31.103
H31.111	H31.112	H31.113	H31.121	H31.122	H31.123	H31.411
H31.412	H31.413	H31	H31.421	H31.422	H31.423	H32
H33.011	H33.012	H33.013	H33.021	H33.022	H33.023	H33.031
H33.032	H33.033	H33.041	H33.042	H33.043	H33.051	H33.052
H33.053	H33.111	H33.112	H33.113	H33.191	H33.192	H33.193
H33.21	H33.22	H33.23	H33.311	H33.312	H33.313	H33.321
H33.322	H33.323	H33.331	H33.332	H33.333	H33.41	H33.42
H33.43	H33.8	H34.01	H34.02	H34.03	H34.11	H34.12
H34.13	H34.211	H34.212	H34.213	H34.231	H34.232	H34.233
H34.8110	H34.8111	H34.8112	H34.8120	H34.8121	H34.8122	H34.8130
H34.8131	H34.821	H34.822	H34.823	H34.8310	H34.8311	H34.8312
H34.8320	H34.8321	H34.8322	H34.8330	H34.8331	H34.8332	H35.011
H35.012	H35.013	H35.021	H35.022	H35.023	H35.031	H35.032
H35.033	H35.041	H35.042	H35.043	H35.051	H35.052	H35.053
H35.061	H35.062	H35.063	H35.071	H35.072	H35.073	H35.09
H35.171	H35.172	H35.173	H35.21	H35.22	H35.23	H35.3110

H35.3111	H35.3112	H35.3113	H35.3114	H35.3120	H35.3121	H35.3122
H35.3123	H35.3124	H35.3130	H35.3131	H35.3132	H35.3133	H35.3134
H35.3210	H35.3211	H35.3212	H35.3213	H35.3220	H35.3221	H35.3222
H35.3223	H35.3230	H35.3231	H35.3232	H35.3233	H35.33	H35.341
H35.342	H35.343	H35.351	H35.352	H35.353	H35.361	H35.362
H35.363	H35.371	H35.372	H35.373	H35.381	H35.382	H35.383
H35.40	H35.411	H35.412	H35.413	H35.421	H35.422	H35.423
H35.431	H35.432	H35.433	H35.441	H35.442	H35.443	H35.451
H35.452	H35.453	H35.461	H35.462	H35.463	H35.50	H35.51
H35.52	H35.53	H35.54	H35.61	H35.62	H35.63	H35.70
H35.711	H35.712	H35.713	H35.721	H35.722	H35.723	H35.731
H35.732	H35.733	H35.81	H35.82	H35.89	H40.831	H40.832
H40.833	H40.89	H43.811	H43.812	H43.813	H43.821	H43.822
H43.823	H44.2A1	H44.2A2	H44.2A3	H44.2B1	H44.2B2	H44.2B3
H44.2C1	H44.2C2	H44.2C3	H44.2D1	H44.2D2	H44.2D3	H44.2E1
H44.2E2	H44.2E3	H47.11	H47.12	H47.13	H47.141	H47.142
H47.143	H53.15	H53.411	H53.412	H53.413	H53.421	H53.422
H53.423	H53.431	H53.432	H53.433	H53.451	H53.452	H53.453
H53.481	H53.482	H53.483	H59.031	H59.032	H59.033	Z79.899*

*** = Z79.899 is to be reported for the baseline evaluation and for annual monitoring of patients on CQ and HCQ**

REIMBURSEMENT

Participating facilities will be reimbursed per their Highmark Health Options contract.

SUMMARY OF LITERATURE

Scanning computerized ophthalmic diagnostic imaging (SCODI) allows for the early detection of glaucomatous damage to the nerve fiber layer or optic nerve and has demonstrated clinical utility in facilitating earlier diagnosis and treatment as well as monitoring for progression and response to treatment. Evidence-based guidelines (2015 Academy of Ophthalmology [AAO] Preferred Practice Pattern [PPP] on Primary Open-Angle Glaucoma and 2010 American Optometric Association [AOA] Optometric Clinical Practice Guideline on Care of the Patient with Open Angle Glaucoma) identify SCODI as one technique that may be used to examine the optic nerve head (ONH) and/or retinal nerve fiber layer (RNFL). SCODI is often used to provide quantitative information to supplement the clinical exam of the optic nerve. SCODI is widely used in the posterior segment, whereas in the anterior segment, the use is still limited.

The evidence-based guideline from the AAO (2015 AAO PPP on Primary Angle Closure) indicates that anterior segment imaging should be considered when angle anatomy is difficult to assess on gonioscopy. There is good evidence demonstrating general agreement between findings on gonioscopy and anterior segment imaging, including ultrasound biomicroscopy and anterior segment optical coherence tomography (AS-OCT). However, AS-OCT is limited to evaluating the iridocorneal angle. AS-OCT is one

technology that may prove useful in evaluating secondary causes of angle closure and elucidating plateau iris.

SCODI is also a valuable tool for the evaluation of patients with retinal disease, especially those with macular abnormalities. SCODI is often used in conjunction with clinical examination of the eye. It is at times used as a baseline and also used in monitoring for progression or response to treatment. The clinical utility of OCT imaging in retinal conditions has been demonstrated as providing an objective, accurate assessment of the amount and location of retinal thickening. Evidence-based guidelines from the AAO (PPP Diabetic Retinopathy [2016] and the PPP Idiopathic Macular Hole [2014, updated 2017]) support that in clinical practice, decisions are often based on OCT findings.

Finally, Marmor et al. (AAO Statement 2016) published recommendations on screening patients who are being treated with chloroquine and hydroxychloroquine. A baseline test is performed, and then ongoing monitoring at regular intervals is recommended. Marmor et al. recommend beginning annual screening after 5 years for patients on acceptable doses of chloroquine or hydroxychloroquine and without any major risk factors.

In an observational case study, Leite et al. (2010) looked at 99 patients with glaucomatous eyes and 47 control patients. The severity of disease was graded using the visual field index (VFI) from standard automated perimetry. The authors looked to determine if disease severity had any impact on the diagnostic accuracy of OCT. The average VFI was 85.5% for the glaucomatous eyes and 99.4% for the control eyes, indicating very minimal visual field loss. The results show that for those with mild disease (VFI near 100%) the sensitivity of OCT was 47% and the specificity was 95%. For those patients with a VFI of 70%, the sensitivity increased to 84% and the specificity was 95%.

Bowd et al. (2017) published a study that looked to estimate the measurement floors for spectral-domain optical coherence tomography (SD-OCT) measurements (minimum rim width [MRW], ganglion cell-inner plexiform layer thickness [GC-IPLT], and circumapillary retinal nerve fiber layer thickness [cpRNFLT]), and compared global change over time in advanced glaucoma eyes. The study included a variability group of 41 eyes of 27 glaucoma patients with moderate to advanced glaucoma to estimate the measurement floors and 87 eyes of 59 patients with advanced to severe glaucoma in a longitudinal group. Average structural loss of MRW, macular GC-IPLT, and cpRNFLT in the variability group eyes (over 5 weeks of follow-up) and the longitudinal group eyes (over 2 years of follow-up) was presented. The results indicated the mean percentage of image area that did not reach the floor in the baseline images of eyes in the longitudinal group (i.e., the image percentage that changed after 2 years of follow-up) was 19% for MRW, 36% for GC-IPLT, and 14% for cpRNFLT, indicating that GC-IPLT likely is the most robust measurement for assessing localized changes in eyes with advanced glaucoma. Authors concluded that a significant percentage of SD-OCT-measured retinal tissue is spared from the measurement floor in advanced glaucoma eyes. In addition, progressive thinning of the spared tissue is observable well into late-stage disease, particularly when GC-IPLT is the structural parameter measured. These results indicate that optical imaging, particularly SD-OCT imaging, has a place in detecting structural change in eyes with advanced glaucoma.

Belghith et al. (2016) did a study to compare SD-OCT standard structural measures MRW, ganglion cell-inner plexiform layer (GC-IPL), and cpRNFL and a new three-dimensional (3D) volume optic nerve head (ONH) change detection method for detecting change over time in severely advanced-glaucoma (open-angle glaucoma [OAG]) patients. The study included three groups of participants. The first group was composed of 35 eyes of 35 advanced-glaucoma patients followed for an average of 3.5 years. The stable glaucoma group consisted of 50 eyes from 27 early-, moderate-, and advanced-glaucoma patients with five serial OCT exams imaged every week for 5 weeks. A third group of 46 eyes from 30 healthy subjects followed for an average of 2.8 years was used to estimate the aging effects. Results suggest that even in very advanced glaucoma, structural loss can be detected in some eyes using standard global structural measures. Specifically, macular GC-IPL had the highest proportion of eyes with detectable change (31%), followed by MRW (11%) and cpRNFL (4%). In addition, the 3D whole-volume Bayesian-kernel

detection scheme (BKDS) change method, which does not require extensive retinal layer segmentation, detected change in 37% of eyes. The authors concluded the results suggest that even in very advanced disease, structural change can be detected, and that monitoring macular GC-IPL and 3D whole-volume patients BKDS change shows promise for identifying progression in advanced glaucoma. However, a larger sample of advanced-glaucoma patients with longer follow-up is needed to validate these findings.

In a retrospective case note review, Hau et al. (2015) compared AS-OCT with ultrasound B-scan (USB) in evaluating iris and iridociliary body lesions. Patients with other anterior or posterior segment lesions or tumors were excluded from this study. The study included 126 patients (126 eyes), the mean age of the patient group was 57.8, who were imaged with both AS-OCT and USB presenting to the same ocular oncology center over a 2-year period of time. The three most common diagnoses were iris naevi, iris pigment epithelial cysts, and iris melanoma. The aim of the study was to evaluate which imaging modality (AS-OCT vs. USB) provided better visualization and characterization of a large cohort of iris and iridociliary body lesions. High-frequency ultrasound biomicroscopy (UBM) was not included in this study but was referenced as having some distinct advantages over USB and AS-OCT as well as limitations on use. The results revealed that USB was better than AS-OCT in visualizing all tumor margins, posterior tumor margin, and producing less posterior shadowing. USB was slightly better for resolving the overall tumor and posterior tumor surface, but AS-OCT was better for resolving the anterior and lateral tumor surface. In total, AS-OCT was able to detect more lesions than USB, especially in imaging iris lesions, but it was unable to detect any of the ciliary body lesions. The authors concluded that AS-OCT is superior to USB for imaging small lesions pertaining to the anterior iris, but USB is better for imaging larger iris lesions with posterior or ciliary body extension.

Janssens et al. (2016) conducted a systematic review to determine how accurate AS-OCT and UBM are in determining tumor margins and tumor depth of conjunctival and corneal tumors and if either of these techniques can provide additional information regarding the diagnosis. Fourteen sources were selected to analyze corneal and conjunctival tumor thickness and internal characteristics and extension in depth and size and shape measured by either of these two noninvasive techniques, AS-OCT or UBM, or a combination of both. The study designs included retrospective analysis, retrospective interventional case series, retrospective noninterventional case series, prospective studies, and unknown study designs. The number of patients in articles using UBM (alone) in conjunctival and corneal tumors totaled 44, the number of patients in articles using AS-OCT (alone) in conjunctival and corneal tumors totaled 211 (212 eyes), and the number of patients in articles using both UBM and AS-OCT in conjunctival and corneal tumors totaled 235 (238 tumors). The results show that both AS-OCT and UBM imaging techniques provide useful information about the internal features, extension, size, and shape of tumors. There is not enough evidence on the advantages and disadvantages of AS-OCT and UBM in certain tumor types. The authors concluded that more comparative studies are needed to investigate which imaging technique is most suitable for a certain tumor type.

ANALYSIS OF EVIDENCE

The clinical utility of SCODI has been established and validated in evidence-based guidelines and literature for early detection of glaucomatous damage to the retinal nerve fiber layer or optic disc, differentiation and diagnosis of other disorders of the optic nerve, as well as monitoring for progressive optic neuropathy, monitoring retinal conditions, and drug-related ocular toxicity.

A number of studies have been published to evaluate the usefulness of posterior OCT for individuals with advanced glaucomatous damage as well as the potential applications of anterior segment OCT (AS-OCT and SD-OCT with anterior segment imaging capabilities) to image and provide measurements of anterior segment structures in a number of clinical situations. Overall, these studies have small sample sizes, relatively limited follow-up, and no documentation of improved health outcomes.

References

Aetna Clinical Policy Bulletin Number 0749. Anterior Segment Scanning Computerized Ophthalmic Diagnostic Imaging. Effective 03/21/2008, Last review 10/13/2016. Last Accessed 05/03/2019.

American Academy of Ophthalmology (AAO), Glaucoma Panel. Primary Angle Closure. Preferred Practice Pattern. San Francisco, CA: AAO; 2015. Last accessed 05/01/2019.

American Academy of Ophthalmology (AAO), Glaucoma Panel. Primary Open-Angle Glaucoma. Preferred Practice Pattern. San Francisco, CA: AAO; 2015. Last accessed 05/03/2019.

American Academy of Ophthalmology (AAO), Glaucoma Panel. Primary Open-Angle Glaucoma Suspect. Preferred Practice Pattern. San Francisco, CA: AAO; 2015. Last accessed 05/03/2019.

American Academy of Ophthalmology (AAO). Cataract in the Adult Eye. Preferred Practice Pattern. San Francisco, CA: AAO; 2016. Last accessed 05/01/2019.

American Academy of Ophthalmology Retina/Vitreous Panel. Preferred Practice Pattern® Guidelines. Idiopathic Macular Hole. San Francisco, CA: American Academy of Ophthalmology; 2014 (updated 2017).

American Academy of Ophthalmology. Web Extra: CPT code 92133 (SCODI). EyeNet Magazine. June 2015.

American Glaucoma Society and American Academy of Ophthalmology. Glaucoma Stage Definitions. Glaucoma Quick Reference Guide. Revised 02/17/2015.

American Optometric Association (AOA), Optometric Clinical Practice Guideline. Care of the Patient with Open Angle Glaucoma. St. Louis, MO: revised 2010.

American Optometric Association (AOA), Optometric Clinical Practice Guideline. Care of the Patient with Primary Angle Closure Glaucoma. St. Louis, MO: revised 1998.

Angmo D, Nongpiur ME, Sharma R, et al. Clinical utility of anterior segment swept-source optical coherence tomography in glaucoma. *Oman J Ophthalmol.* 2016 Jan-Apr;9(1):3-10.

Bakri SJ, Berrocal A, Capone A, et al. Posterior Vitreous Detachment. Retinal Health Series – Facts from the ASRS. The Foundation American Society of Retina Specialists. 2016.

Belghith A, Medeiros FA, Bowd C, et al. Structural Change Can Be Detected in Advanced-Glaucoma Eyes. *Invest Ophthalmol Vis Sci.* 2016 Jul 1;57(9): OCT511-8.

Bowd C, Zangwill LM, Weinreb RN, et al. Estimating Optical Coherence Tomography Structural Measurement Floors to Improve Detection of Progression in Advanced Glaucoma. *Am J Ophthalmol.* 2017 Mar; 175:37-44.

de Moraes CG, Liebmann JM, Medeiros FA, et al. Management of advanced glaucoma: Characterization and monitoring. *Surv Ophthalmol.* 2016 Sep-Oct;61(5):597-615.

Fernandez-Vigo JI, Fernandez-Vigo C, Martinez de la Casa JM, et al. Identification of iridocorneal angle structures assessed by Fourier domain optical coherence tomography. *Arch Soc Esp Oftalmol.* 2016 Feb;91(2):74-80.

Florida Blue Medical Coverage Guideline 01-92000-17 Scanning Computerized Ophthalmic Diagnostic Imaging; effective 04/17/2000; revised 10/01/2016.

Han SB, Liu YC, Noriega KM, et al. Applications of Anterior Segment Optical Coherence Tomography in Cornea and Ocular Surface Diseases. *J Ophthalmol*. 2016; 2016:4971572.

Hau SC, Papastefanou V, Shah S, et al. Evaluation of iris and iridociliary body lesions with anterior segment optical coherence tomography versus ultrasound B-scan. *Br J Ophthalmol*. 2015 Jan;99(1):81-6.

Janssens K, Martens M, Lauwers N, et al. To Study and Determine the Role of Anterior Segment Optical Coherence Tomography and Ultrasound Biomicroscopy in Corneal and Conjunctival Tumors. *J Ophthalmol*. 2016;1048760. doi: 10.1155/2016/1048760. Epub 2016 Dec 6.

Kim KE, Oh S, Jeoung JW, et al. Spectral-domain Optical Coherence Tomography in Manifest Glaucoma: Its Additive Role in Structural Diagnosis. *Am J Ophthalmol*. 2016 Nov; 171:18-26.

Kreda SH. Diagnosis and Management of Optic Disc Elevation. *Optometric Management*. 2009.

Leite MT, Zangwill LM, Weinreb RN, et al. Effect of Disease Severity on the Performance of Cirrus Spectral-Domain OCT for Glaucoma Diagnosis. *Invest Ophthalmol Vis Sci*. 2010 Aug;51(8):4104-4109.

Marmor MF, Kellner U, Lai TY, et al. American Academy of Ophthalmology. Recommendations on screening for Chloroquine and Hydroxychloroquine retinopathy (2016 Revision). *Ophthalmology*. 2016 Jun;123(6):1386-1394.

National Institutes of Health (NIH), National Eye Institute (NEI). Retinal Disease Program – National Plan for Eye and Vision Research [NEI Strategic Planning].

Nongpiur, ME, Aboobakar IF, Baskaran M, et al. Association of Baseline Anterior Segment Parameters with the Development of Incident Gonioscopic Angle Closure. *JAMA Ophthalmol*. 2017 Mar 1;135(3):252-258.

Rao HL, Addepalli UK, Chaudhary S, et al. Ability of different scanning protocols of spectral domain optical coherence tomography to diagnose preperimetric glaucoma. *Invest Ophthalmol Vis Sci*. 2013 Nov 1;54(12):7252-7.

Rao HL, Yadav RK, Addepalli UK, et al. Comparing spectral-domain optical coherence tomography and standard automated perimetry to diagnose glaucomatous optic neuropathy. *J Glaucoma*. 2015 Jun-Jul;24(5):e69-74.

Suda K, Hangai M, Akagi T, et al. Comparison of Longitudinal Changes in Functional and Structural Measures for Evaluating Progression of Glaucomatous Optic Neuropathy. *Invest Ophthalmol Vis Sci*. 2015 Aug;56(9):5477-84.

Thomas BJ, Galor A, Nanji AA, et al. Ultra high-resolution anterior segment optical coherence tomography in the diagnosis and management of ocular surface squamous neoplasia. *Ocul Surf*. 2014 Kam;12(1):46-58.

Tun TA, Baskaran M, Tan SS, et al. Evaluation of the Anterior Segment Angle-to-Angle Scan of Cirrus High-Definition Optical Coherence Tomography and Comparison With Gonioscopy and With the Visante OCT. *Invest Ophthalmol Vis Sci*. 2017 Jan;58(1):59-64.

Xu BY, Israelsen P, Pan BX, et al. Benefit of Measuring Anterior Segment Structures Using an Increased Number of Optical Coherence Tomography Images: The Chinese American Eye Study. *Invest Ophthalmol Vis Sci*. 2016 Nov; 57(14):6313-6319.